Cart (Loading....) | Create Account
Close category search window
 

Unequal Erasure Protection Technique for Scalable Multistreams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dumitrescu, S. ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, ON, Canada ; Rivers, G. ; Shirani, S.

This paper presents a novel unequal erasure protection (UEP) strategy for the transmission of scalable data, formed by interleaving independently decodable and scalable streams, over packet erasure networks. The technique, termed multistream UEP (M-UEP), differs from the traditional UEP strategy by: 1) placing separate streams in separate packets to establish independence and 2) using permuted systematic Reed-Solomon codes to enhance the distribution of message symbols amongst the packets. M-UEP improves upon UEP by ensuring that all received source symbols are decoded. The R-D optimal redundancy allocation problem for M-UEP is formulated and its globally optimal solution is shown to have a time complexity of O(2N N(L+1)N+1) , where N is the number of packets and L is the packet length. To address the high complexity of the globally optimal solution, an efficient suboptimal algorithm is proposed which runs in O(N 2 L 2) time. The proposed M-UEP algorithm is applied on SPIHT coded images in conjunction with an appropriate grouping of wavelet coefficients into streams. The experimental results reveal that M-UEP consistently outperforms the traditional UEP reaching peak improvements of 0.6 dB. Moreover, our tests show that M-UEP is more robust than UEP in adverse channel conditions.

Published in:

Image Processing, IEEE Transactions on  (Volume:19 ,  Issue: 2 )

Date of Publication:

Feb. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.