By Topic

Probabilistic Constrained Load Flow Considering Integration of Wind Power Generation and Electric Vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Vlachogiannis, J.G. ; Dept. of Electr. Eng., Tech. Univ. of Denmark, Lyngby, Denmark

A new formulation and solution of probabilistic constrained load flow (PCLF) problem suitable for modern power systems with wind power generation and electric vehicles (EV) demand or supply is represented. The developed stochastic model of EV demand/supply and the wind power generation model are incorporated into load flow studies. In the resulted PCLF formulation, discrete and continuous control parameters are engaged. Therefore, a hybrid learning automata system (HLAS) is developed to find the optimal offline control settings over a whole planning period of power system. The process of HLAS is applied to a new introduced 14-busbar test system which comprises two wind turbine (WT) generators, one small power plant, and two EV-plug-in stations connected at two PQ buses. The results demonstrate the excellent performance of the HLAS for PCLF problem. New formulae to facilitate the optimal integration of WT generation in correlation with EV demand/supply into the electricity grids are also introduced, resulting in the first benchmark. Novel conclusions for EV portfolio management are drawn.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 4 )