Cart (Loading....) | Create Account
Close category search window

Application of NSGA-II Algorithm to Single-Objective Transmission Constrained Generation Expansion Planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Murugan, P. ; Electron. & Commun. Eng. Dept., Arulmigu Kalasalingam Coll. of Eng., Krishnankoil, India ; Kannan, S. ; Baskar, S.

This paper presents an application of elitist nondominated sorting genetic algorithm version II (NSGA-II), a multiobjective algorithm to a constrained single objective optimization problem, the transmission constrained generation expansion planning (TC-GEP) problem. The TC-GEP problem is a large scale and challenging problem for the decision makers (to decide upon site, capacity, type of fuel, etc.) as there exist a large number of combinations. Normally the TC-GEP problem has an objective and a set of constraints. To use NSGA-II, the problem is treated as a two-objective problem. The first objective is the minimization of cost and the second objective is to minimize the sum of normalized soft constraints violation. The hard constraints (must satisfy constraints) are treated as constraints only. To improve the performance of the NSGA-II, two modifications are proposed. In problem formulation the modification is virtual mapping procedure (VMP), and in NSGA-II algorithm, controlled elitism is introduced. The NSGA-II is applied to solve TC-GEP problem for modified IEEE 30-bus test system for a planning horizon of six years. The results obtained by NSGA-II are compared and validated against single-objective genetic algorithm and dynamic programming. The effectiveness of each proposed approach has also been discussed in detail.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 4 )

Date of Publication:

Nov. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.