Cart (Loading....) | Create Account
Close category search window
 

Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Junyi Wang ; Nat. Inst. of Inf. & Commun. Technol. (NICT), Yokosuka, Japan ; Zhou Lan ; Chang-woo Pyo ; Baykas, T.
more authors

In order to realize high speed, long range, reliable transmission in millimeter-wave 60 GHz wireless personal area networks (60 GHz WPANs), we propose a beamforming (BF) protocol realized in media access control (MAC) layer on top of multiple physical layer (PHY) designs. The proposed BF protocol targets to minimize the BF set-up time and to mitigate the high path loss of 60 GHz WPAN systems. It consists of 3 stages, namely the device (DEV) to DEV linking, sector-level searching and beam-level searching. The division of the stages facilitates significant reduction in setup time as compared to BF protocols with exhaustive searching mechanisms. The proposed BF protocol employs discrete phase-shifters, which significantly simplifies the structure of DEVs as compared to the conventional BF with phase-and-amplitude adjustment, at the expense of a gain degradation of less than 1 dB. The proposed BF protocol is a complete design and PHY-independent, it is applicable to different antenna configurations. Simulation results show that the setup time of the proposed BF protocol is as small as 2% when compared to the exhaustive searching protocol. Furthermore, based on the codebooks with four phases per element, around 15.1 dB gain is achieved by using eight antenna elements at both transmitter and receiver, thereby enabling 1.6 Gbps-data-streaming over a range of three meters. Due to the flexibility in supporting multiple PHY layer designs, the proposed protocol has been adopted by the IEEE 802.15.3c as an optional functionality to realize Gbps communication systems.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:27 ,  Issue: 8 )

Date of Publication:

October 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.