By Topic

Improving Signatures by Locality Exploitation for Transactional Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Quislant, R. ; Dept. of Comput. Archit., Univ. of Malaga, Malaga, Spain ; Gutierrez, E. ; Plata, O. ; Zapata, E.L.

Writing multithreaded programs is a fairly complex task that poses a major obstacle to exploit multicore processors. Transactional Memory (TM) emerges as an alternative to the conventional multithreaded programming to ease the writing of concurrent programs. Hardware Transactional Memory (HTM) implements most of the required mechanisms of TM at the core level, e.g. conflict detection. Signatures are designed to support the detection of conflicts amongst concurrent transactions, and are usually implemented as per-thread Bloom filters in HTM. Basically, signatures use fixed hardware to summarize an unbounded amount of read and write memory addresses at the cost of false conflicts (detection of non-existing conflicts). In this paper, a novel signature design that exploit locality is proposed to reduce the number of false conflicts. We show how that reduction translates into a performance improvement in the execution of concurrent transactions. Our signatures are based on address mappings of the hash functions that reduce the number of bits inserted in the filter for those addresses nearby located. This is specially favorable for large transactions, that usually exhibit some amount of spatial locality. Furthermore, the implementation do not require extra hardware. Our proposal was experimentally evaluated using the Wisconsin GEMS simulator and all codes from the STAMP benchmark suite. Results show a significant performance improvement in many cases, specially for those codes with long-running, large-data transactions.

Published in:

Parallel Architectures and Compilation Techniques, 2009. PACT '09. 18th International Conference on

Date of Conference:

12-16 Sept. 2009