By Topic

CMOS Ultrasound Transceiver Chip for High-Resolution Ultrasonic Imaging Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Insoo Kim ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Hyunsoo Kim ; Griggio, F. ; Tutwiler, R.L.
more authors

The proposed CMOS ultrasound transceiver chip will enable the development of portable high resolution, high-frequency ultrasonic imaging systems. The transceiver chip is designed for close-coupled MEMS transducer arrays which operate with a 3.3-V power supply. In addition, a transmit digital beamforming system architecture is supported in this work. A prototype chip containing 16 receive and transmit channels with preamplifiers, time-gain compensation amplifiers, a multiplexed analog-to-digital converter with 3 kB of on-chip SRAM, and 50-MHz resolution time delayed excitation pulse generators has been fabricated. By utilizing a shared A/D converter architecture, the number of A/D converter and SRAM is cut down to one, unlike typical digital beamforming systems which need 16 A/D converters for 16 receive channels. The chip was fabricated in a 0.35-mum standard CMOS process. The chip size is 10 mm2, and its average power consumption in receive mode is approximately 270 mW with a 3.3-V power supply. The transceiver chip specifications and designs are described, as well as measured results of each transceiver component and initial pulse-echo experimental results are presented.

Published in:

Biomedical Circuits and Systems, IEEE Transactions on  (Volume:3 ,  Issue: 5 )