By Topic

Threshold Temperature Dependence of a Quantum-Dot Laser Diode With and Without p-Doping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ozgur, G. ; Coll. of Opt. & Photonics (CREOL), Univ. of Central Florida, Orlando, FL, USA ; Demir, A. ; Deppe, D.G.

A study of the threshold characteristics of quantum-dot (QD) laser diodes shows how inhomogeneous broadening and p-doping influence the QD laser's temperature dependence of threshold T 0. The analysis includes the additional parameters of homogeneous broadening, quantum state populations, and threshold gain. The results show that while the source of negative T 0 can occur due to different effects, the transparency current plays a critical role in both undoped and p-doped QD lasers. Experimental trends of negative T 0 and their dependence on p-doping are replicated in the calculated results. Inhomogeneous broadening is found to play a lesser role to the transparency current in setting T 0. Homogeneous broadening is most important for uniform QDs with thermally isolated ground-state transitions.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:45 ,  Issue: 10 )