Cart (Loading....) | Create Account
Close category search window
 

Piezoelectric Active-Sensor Diagnostics and Validation Using Instantaneous Baseline Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Overly, T.G. ; Los Alamos Nat. Lab., Los Alamos, NM, USA ; Park, G. ; Farinholt, Kevin M. ; Farrar, C.R.

This paper presents a signal processing tool that efficiently performs piezoelectric (PZT) sensor diagnostic and validation. Validation of the sensor/actuator functionality during structural health monitoring (SHM) operation is a critical component to successfully implement a complete and robust SHM system, especially with an array of PZT active-sensors involved. The basis of this method is to track the capacitive value of PZT transducers, which manifests in the imaginary part of the measured electrical admittance. Both degradation of the mechanical/electrical properties of a PZT transducer and the bonding defects between a PZT patch and a host structure can be identified by the proposed process. However, it is found that the temperature variations in sensor boundary conditions manifest themselves in similar ways in the measured electrical admittances. Therefore, we examine the effects of temperature variation on the sensor diagnostic process and develop an efficient signal processing tool that enables the identification of a sensor validation feature that can be obtained instantaneously without relying on prestored baselines. This paper concludes with experimental results to demonstrate the effectiveness of the proposed technique.

Published in:

Sensors Journal, IEEE  (Volume:9 ,  Issue: 11 )

Date of Publication:

Nov. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.