By Topic

Magnetic Dipole Modeling Combined With Material Sensitivity Analysis for Solving an Inverse Problem of Thin Ferromagnetic Sheet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Giwoo Jeung ; Sch. of Electr. Eng. & Comput. Sci., Kyungpook Nat. Univ., Daegu, South Korea ; Chang-Seob Yang ; Hyun-Ju Chung ; Se-Hee Lee
more authors

This paper presents an efficient methodology for determining the underwater field anomaly due to the remanent magnetization of a ferromagnetic ship hull by utilizing a magnetic dipole modeling technique combined with material sensitivity analysis. The complicated 3D structure of the hull is replaced with an equivalent magnetic dipole array placed in a 2D plane, of which the optimal dipole moment values will be easily sought out with the aid of material sensitivity analysis. To achieve this, a material sensitivity formula, which contains the first-order gradient information of an objective function with respect to the magnetic dipoles, is analytically derived by exploiting the augmented objective function and adjoint variable method. The proposed method leads to easy numerical implementation and also dramatically reducing system unknowns of the 3D inverse problem considered. Finally, the validity of the method has been tested with real measurements of a scale model ship as well as numerical results of our previous work, which adopted the magnetic charge method in conjunction with material sensitivity analysis.

Published in:

IEEE Transactions on Magnetics  (Volume:45 ,  Issue: 10 )