By Topic

Design, Fabrication, and Testing of Three-Dimensional Miniaturized Rectangular Cavity Resonator Based on Metamaterial

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Meng, F.Y. ; Sch. of Electron. & Inf. Technol., Harbin Inst. of Technol. (HIT), Harbin, China ; Wu, Q. ; Liang, Y. ; Zhang, K.
more authors

In this paper, we have demonstrated that a three-dimensional (3-D) miniaturized rectangular cavity resonator (MRCR) with simultaneously shorten electric length and electric width can be designed, fabricated and tested through extending the analysis of the metamaterial-based cavity resonator to the 3-D case. Resonance equation solutions of a rectangular cavity resonator filled with anisotropic metamaterials bilayer are explored. Results show that the resonance frequency of such a cavity resonator can be simultaneously independent on the cavity width and length when the transversal components of the permeability tensors of the filled metamaterials have opposite sign. Based on the results, a 3-D MRCR is designed, fabricated, and tested by using modified SRRs with negative transversal permeability. It is shown that the electrical length and width of the designed 3-D MRCR are simultaneously reduced to 0.2 much smaller than 0.5, which is the theoretical minimum of the electric length and width of a conventional rectangular cavity resonator.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 10 )