Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Time-optimal obstacle avoidance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sundar, S. ; Dept. of Mech. Aerosp. & Nucl. Eng., California Univ., Los Angeles, CA, USA ; Shiller, Z.

This paper presents a method for generating near-time optimal trajectories in cluttered environments for manipulators with invariant inertia matrices. For one obstacle, the method generates the time-optimal trajectory by minimizing the time-derivative of the return (cost) function for this problem, satisfying the Hamilton-Jacobi-Bellman (HJB) equation. For multiple obstacles, the trajectory is generated using the pseudo return function, which is an approximation of the return function for the multi-obstacle problem. The pseudo return function avoids one obstacle at a time, producing near-optimal trajectories that are guaranteed to avoid the obstacles and satisfy the actuator constraints. An example with circular obstacles demonstrates close correlation between the near-optimal and optimal paths, requiring computational efforts that are suitable for on-line implementations

Published in:

Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on  (Volume:3 )

Date of Conference:

21-27 May 1995