By Topic

Possible Spin Pumping Effects on Spin Torque Induced Magnetization Switching in Magnetic Tunneling Junctions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaobin Wang ; Seagate Technol., Bloomington, MN, USA ; Wenzhong Zhu ; Yuankai Zheng ; Gao, Zheng
more authors

Dependence of spin torque induced magnetization switching upon interfacial insulating layers properties of magnetic tunneling junctions (MTJ) are studied. For the same magnetic properties and patterning geometric dimensions, changes in MTJ interfacial insulating layers properties reveal interesting magnetization switching behaviors. These behaviors cannot be explained by conventional Landau-Lifshitz-Gilbert equation with a spin torque term and an intrinsic ferromagnetic relaxation damping. However the magnetization switching dynamics can be understood through assumption of spin pumping effects in magnetic tunneling junctions. This is not only important for fundamental understanding of spin and electronic transport in MTJ but also important for practical trade-offs between critical switching current and MTJ resistance for spin torque random access memory.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 10 )