By Topic

The Static and Dynamic Responses of Binary Mixture Perfluoropolyether Lubricant Films— Molecular Structural Effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seung Chung, Pil ; Dept. of Chem. Eng., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Hakhee Park ; Jhon, Myung S.

Static and dynamic properties of single-component perfluoropolyether (PFPE) lubricants have been studied for optimal lubricant selection by examining the molecular conformations that influence the thickness and the mobility for the self-healing capability in lubricant nanofilms. In this paper, we examine the physiochemical properties of the mixture of these two PFPEs using molecular dynamics (MD) simulations to find an optimal blend ratio to meet the stringent requirements for disk lubricants of ultra-low head media spacing (HMS). A coarse-grained, bead-spring model was used to model the polymer nanoblends using functional and nonfunctional PFPEs. We examined the static and dynamic responses of binary PFPE films as a function of the molecular structures including end-group functionality. The effect of the functional end-group on the static structures was examined by simulating the parallel and perpendicular components of the radius of gyration. The dynamic responses of various PFPE nanoblends were also simulated by explicitly calculating the self-diffusion coefficient of a tagged molecule. Polydispersity effect on nanoblends was also examined.

Published in:

Magnetics, IEEE Transactions on  (Volume:45 ,  Issue: 10 )