By Topic

High Speed, High Stability and Low Power Sensing Amplifier for MTJ/CMOS Hybrid Logic Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Densely embedding Magnetic Tunnel Junctions (MTJ) in CMOS logic circuits is considered as one potentially powerful solution to bring non volatility, instant on/off and low standby power in today's programmable logic circuits, in order to overcome major drawbacks while preserving high operation speed. A critical issue in this process is the integration of MTJ electric signal to CMOS electronics, in particular the requirement of ldquozerordquo read/write error for logic applications. In this paper, we propose a new sense amplifier circuit, called Pre-Charge Sense Amplifier (PCSA). This circuit, comprising 7 CMOS transistors at minimum size, is able to read the magnetic configuration of a pair of magnetic tunnel junctions with opposite configurations at high speed (about 200 ps), with very low power and error rate compared to previously proposed solutions. Simulations using a ST Microelectronics 90 nm design kit and a compact model of MTJ demonstrate the performances of PCSA.

Published in:

IEEE Transactions on Magnetics  (Volume:45 ,  Issue: 10 )