By Topic

Noise-Shaping Gain-Filtering Techniques for Integrated Receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tekin, A. ; Dept. of Electr. Eng., Univ. of California, Santa Cruz, CA, USA ; Elwan, H. ; Ismail, A. ; Pedrotti, K.

In this paper, a new technique for realizing area-efficient, low-noise filters is introduced. The proposed filter topologies utilize noise shaping techniques to shift the noise of the passive and active filter components out of the passband of the filter. This is illustrated by implementing a programmable noise-shaped post-mixer gain-filtering circuit for a CMOS Mobile-TV tuner. The proposed circuits relax the noise-linearity tradeoff in the receiver chain by providing blocker rejection following the mixer outputs. The filter provides an in-band input referred noise density as low as 7.5 nV/sqrt(Hz). The measured out-of-band IIP3 values are 30 dBV and 31.5 dBV for the 3.8-MHz (DVB-H) and 750-kHz (ISDB-T) modes, respectively. Total current consumption is 5.5 mA from a 1.2-V supply. The gain of the block is programmable to be 0 dB, 8 dB, 14 dB, or 20 dB. The design occupies a die area of 0.28 mm2 in a 65-nm CMOS process covering a frequency band of 700 kHz to 5.2 MHz as a universal mobile-TV integrated baseband gain-filtering solution.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:44 ,  Issue: 10 )