Cart (Loading....) | Create Account
Close category search window
 

A 6-Gb/s Wireless Inter-Chip Data Link Using 43-GHz Transceivers and Bond-Wire Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Wu-Hsin Chen ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Sanghoon Joo ; Sayilir, S. ; Willmot, R.
more authors

A 43-GHz wireless inter-chip data link including antennas, transmitters, and receivers is presented. The industry standard bonding wires are exploited to provide high efficiency and low-cost antennas. This type of antennas can provide an efficient horizontal communication which is hard to achieve using conventional on-chip antennas. The system uses binary amplitude shift keying (ASK) modulation to keep the design compact and power efficient. The transmitter includes a differential to single-ended modulator and a two-stage power amplifier (PA). The receiver includes a low-noise amplifier (LNA), pre-amplifiers, envelope detectors (ED), a variable gain amplifier (VGA), and a comparator. The chip is fabricated in 180-nm SiGe BiCMOS technology. With power-efficient transceivers and low-cost high-performance antennas, the implemented inter-chip link achieves bit-error rate (BER) around 10-8 for 6 Gb/s over a distance of 2 cm. The signal-to-noise ratio (SNR) of the recovered signal is about 24 dB with 18 ps of rms jitter. The transmitter and receiver consume 57 mW and 60 mW, respectively, including buffers. The bit energy efficiency excluding test buffers is 17 pJ/bit. The presented work shows the feasibility of a low power high data rate wireless inter-chip data link and wireless heterogeneous multi-chip networks.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:44 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.