By Topic

A unifying framework for tolerance analysis in sensing, design, and manufacturing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sobh, T.M. ; Dept. of Comput. Sci., Utah Univ., Salt Lake City, UT, USA ; Henderson, T.C. ; Zana, F.

In this work we address the problem of tolerance representation and analysis across the domains of industrial inspection using sensed data, CAD design, and manufacturing. Instead of using geometric primitives in CAD models to define and represent tolerances, we propose the use of stronger methods that are completely based on the manufacturing knowledge for the objects to be inspected. We guide our sensing strategies based on the manufacturing process plans for the parts that are to be inspected and define, compute, and analyze the tolerances of the parts based on the uncertainty in the sensed data along the different toolpaths of the sensed part. We believe that our new approach is the best way to unify tolerances across sensing, CAD, and CAM, as it captures the manufacturing knowledge of the parts to be inspected, as opposed to just CAD geometric representations

Published in:

Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on  (Volume:3 )

Date of Conference:

21-27 May 1995