By Topic

SRAM Leakage Reduction by Row/Column Redundancy Under Random Within-Die Delay Variation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Goudarzi, M. ; Comput. Eng. Dept., Sharif Univ. of Technol., Tehran, Iran ; Ishihara, T.

Share of leakage in total power consumption of static RAM (SRAM) memories is increasing with technology scaling. Reverse body biasing increases threshold voltage (Vth), which exponentially reduces subthreshold leakage, but it increases SRAM access delay. Traditionally, when all cells of an SRAM block used to have almost the same delay, within-die variations are increasingly widening the delay distribution of cells even within a single SRAM block, and hence, most of these cells are substantially faster than the delay set for the entire block. Consequently, after the reverse body biasing and the resulting delay rise, only a small number of cells violate the original delay of the SRAM block; we propose to replace them with sufficient number of spare rows/columns of SRAM. Our experiments show that the leakage can be reduced by up to 40% in a 90-nm predictive technology by adding less than ten spare columns to an 8-kB SRAM array for a negligible penalty in delay, dynamic power, and area in the presence of 3% uncorrelated random delay variation.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 12 )