By Topic

An Approximately Efficient TDOA Localization Algorithm in Closed-Form for Locating Multiple Disjoint Sources With Erroneous Sensor Positions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Le Yang ; Dept. of Electr. & Comput. Eng., Univ. of Missouri, Columbia, MO, USA ; Ho, K.C.

This paper considers the problem of time difference-of-arrival (TDOA) source localization when the TDOA measurements from multiple disjoint sources are subject to the same sensor position displacements from the available sensor positions. This is a challenging problem and closed-form solution with good localization accuracy has yet to be found. This paper proposes an estimator that can achieve this purpose. The proposed algorithm jointly estimates the unknown source and sensor positions to take the advantage that the TDOAs from different sources have the same sensor position displacements. The joint estimation is a highly nonlinear problem due to the coupling of source and sensor positions in the measurement equations. We introduce the novel idea of hypothesized source locations in the algorithm development to enable the formulation of psuedolinear equations, thereby leading to the establishment of closed-form solution for source location estimates. Besides the advantage of closed-form, the newly developed algorithm is shown analytically, under the condition that the TDOA measurement noise and the sensor position errors are sufficiently small, to reach the CRLB accuracy. For clarity, the localization of two disjoint sources is used in the algorithm development. The developed algorithm is then examined under the special case of a single source and extended to the more general case of more than two unknown sources. The theoretical developments are supported by simulations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 12 )