By Topic

High- V_{\rm GS} PFET DC Hot-Carrier Mechanism and Its Relation to AC Degradation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rauch, S.E. ; Semicond. R&D Center, IBM Microelectron., Hopewell Junction, VA, USA ; Guarin, F. ; La Rosa, G.

Recently, negative bias temperature instability (NBTI) enhanced by local self-heating has been proposed as a mechanism for high-Vg PFET ??hot-carrier?? degradation. This is based on the idea that the effective temperature for NBTI is increased in the drain region due to a very localized self-heating effect reported in the literature by Pop and others. Our PFET dc stress data are consistent with local self-heating activated NBTI at high Vg , but at mid Vg, we observed similar behavior to typical NFET hot carriers, i.e., energy-driven hot carrier (EDHC). If self-heating is involved with the PFET high-Vg dc degradation, the question of ac behavior naturally arises. Our PFET ring-oscillator stress results demonstrate that the high-VGS PFET hot carrier dominant under dc stress does not significantly contribute under typical CMOS switching conditions, whereas the mid-VGS hot carrier does. This supports the idea that the predominant damage mechanism involved at high VGS is NBTI enhanced by local self-heating with a thermal time constant longer than a few hundred picoseconds.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:10 ,  Issue: 1 )