By Topic

Parameter Estimation of Phase-Modulated Signals Using Bayesian Unwrapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mark R. Morelande ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Parkville, VIC, Australia

Parametric estimation of phase-modulated signals (PMS) in additive white Gaussian noise is considered. The prohibitive computational expense of maximum likelihood estimation for this problem has led to the development of many suboptimal estimators which are relatively inaccurate and cannot operate at low signal-to-noise ratios (SNRs). In this paper, a novel technique based on a probabilistic unwrapping of the phase of the observations is developed. The method is capable of more accurate estimation and operates effectively at much lower SNRs than existing algorithms. This is demonstrated in Monte Carlo simulations.

Published in:

IEEE Transactions on Signal Processing  (Volume:57 ,  Issue: 11 )