By Topic

A Kalman/Particle Filter-Based Position and Orientation Estimation Method Using a Position Sensor/Inertial Measurement Unit Hybrid System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Won, S.-H.P. ; Dept. of Mech. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Melek, W.W. ; Golnaraghi, F.

This paper presents a novel methodology that estimates position and orientation using one position sensor and one inertial measurement unit. The proposed method estimates orientation using a particle filter and estimates position and velocity using a Kalman filter (KF). In addition, an expert system is used to correct the angular velocity measurement errors. The experimental results show that the orientation errors using the proposed method are significantly reduced compared to the orientation errors obtained from an extended Kalman filter (EKF) approach. The improved orientation estimation using the proposed method leads to better position estimation accuracy. This paper studies the effects of the number of particles of the proposed filter and position sensor noise on the orientation accuracy. Furthermore, the experimental results show that the orientation of the proposed method converges to the correct orientation even when the initial orientation is completely unknown.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 5 )