Cart (Loading....) | Create Account
Close category search window
 

Highly Spectrally Efficient DWDM Transmission at 7.0 b/s/Hz Using 8 ,\times, 65.1-Gb/s Coherent PDM-OFDM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Takahashi, H. ; KDDI R&D Labs., Inc., Saitama, Japan ; Al Amin, A. ; Jansen, S.L. ; Morita, I.
more authors

In this paper, we discuss the realization of wavelength-division multiplexing (WDM) transmission at high spectral efficiency. For this experiment, coherent polarization-division multiplexing--orthogonal frequency-division multiplexing (PDM-OFDM) is used as a modulation format. PDM-OFDM uses training symbols for channel estimation. This makes OFDM easily scalable to higher level modulation formats as channel estimation is realized with training symbols that are independent of the constellation size. Furthermore, because of its well-defined spectrum OFDM requires only a small guard band between WDM channels. The dependence of the number of OFDM subcarriers is investigated with respect to the interchannel linear crosstalk. At a constant data rate the number of OFDM subcarriers is estimated to achieve lower linear crosstalk in order to achieve higher spectral efficiency. We then experimentally demonstrate dense WDM (DWDM) transmission with 7.0-b/s/Hz net spectral efficiency using 8 ?? 65.1-Gb/s coherent PDM-OFDM signals with 8-GHz WDM channel spacing utilizing 32-quadrature-amplitude-modulation subcarrier modulation. Successful transmission is achieved over 240 km standard single-mode fiber (SSMF) spans with hybrid erbium-doped fiber amplifiers/Raman amplification.

Published in:

Lightwave Technology, Journal of  (Volume:28 ,  Issue: 4 )

Date of Publication:

Feb.15, 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.