Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

A Globally Convergent Matricial Algorithm for Multivariate Spectral Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ramponi, F. ; Autom. Control Lab., ETH Zurich, Zurich, Switzerland ; Ferrante, A. ; Pavon, M.

In this paper, we first describe a matricial Newton-type algorithm designed to solve the multivariable spectrum approximation problem. We then prove its global convergence. Finally, we apply this approximation procedure to multivariate spectral estimation, and test its effectiveness through simulation. Simulation shows that, in the case of short observation records, this method may provide a valid alternative to standard multivariable identification techniques such as Matlab's PEM and Matlab's N4SID.

Published in:

Automatic Control, IEEE Transactions on  (Volume:54 ,  Issue: 10 )