By Topic

The refinement of models with the aid of the fuzzy k-nearest neighbors approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seok-Beom Roh ; Dept. of Electr. Electron. & Inf. Eng., Wonkwang Univ., Iksan, South Korea ; Tae-Chon Ahn ; Pedrycz, W.

In this paper, we propose a new design methodology that supports the development of hybrid incremental models. These models result through an iterative process in which a parametric model and a nonparametric model are combined so that their underlying and complementary functionalities become fully exploited. The parametric component of the hybrid model captures some global relationships between the input variables and the output variable. The nonparametric model focuses on capturing local input-output relationships and thus augments the behavior of the model being formed at the global level. In the underlying design, we consider linear and quadratic regression to be a parametric model, whereas a fuzzy k-nearest neighbors model serves as the nonparametric counterpart of the overall model. Numeric results come from experiments that were carried out on some low-dimensional synthetic data sets and several machine learning data sets from the University of California-Irvine Machine Learning Repository.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:59 ,  Issue: 3 )