Cart (Loading....) | Create Account
Close category search window

Triangular Self-Convolution Window With Desirable Sidelobe Behaviors for Harmonic Analysis of Power System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
He Wen ; Coll. of Electr. & Inf. Eng., Hunan Univ., Changsha, China ; Zhaosheng Teng ; Siyu Guo

Weak harmonic components can easily be obscured by nearby strong harmonics due to the spectral leakage in the power system. To obtain a window suitable for solving the problem, the triangular self-convolution window (TSCW) is constructed, with the triangular window being the parent window to take advantages of its narrow major lobe and simple computation. A TSCW-based phase difference correction algorithm for calculating the power system signal parameters, such as frequency, phase, and amplitude, is presented in this paper. The TSCW has a low peak sidelobe level, a high sidelobe rolloff rate, and a simple spectral representation. Leakage errors and harmonic interferences are thus considerably reduced by weighting samples with the TSCW. The TSCW-based phase difference correction algorithm is free of solving high-order equations, and the overall method can easily be implemented in embedded systems. The effectiveness of the method proposed was analyzed by means of computer simulations and practical experiments for multifrequency signals without noise and with quantization noise.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:59 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.