By Topic

On the storage, management and analysis of (multi) similarity for large scale protein structure datasets in the grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gianluigi Folino ; CNR-ICAR, University of Calabria, Rende (CS), Italy ; Azhar Ali Shah ; Natalio Kransnogor

Assessment of the (Multi) Similarity among a set of protein structures is achieved through an ensemble of protein structure comparison methods/algorithms. This leads to the generation of a multitude of data that varies both in type and size. After passing through standardization and normalization, this data is further used in consensus development; providing domain independent and highly reliable view of the assessment of (di)similarities. This paper briefly describes some of the techniques used for the estimation of missing/invalid values resulting from the process of multi-comparison of very large scale datasets in a distributed/grid environment. This is followed by an empirical study on the storage capacity and query processing time required to cope with the results of such comparisons. In particular we investigate and compare the storage/query overhead of two commonly used database technologies such as the Hierarchical Data Format (HDF) (HDF5) and Relational Database Management System (RDBMS) (Oracle/SQL) in terms of our application deployed on the National Grid Service (NGS), UK. As the technologies explored under this investigation are quite generic in the science and engineering domain, our findings would also be beneficial for other scientific applications having related magnitude of data and functionality.

Published in:

Computer-Based Medical Systems, 2009. CBMS 2009. 22nd IEEE International Symposium on

Date of Conference:

2-5 Aug. 2009