By Topic

Congestion control mechanism for ATM networks using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tarraf, A.A. ; Dept. of Electr. Eng., City Coll. of New York, NY, USA ; Habib, I.W. ; Saadawi, T.N.

This paper presents a new approach to the problem of congestion control arising to the user-to-network interface (UNI) of the ATM-based broadband integrated services digital networks (B-ISDN). Our approach employs an adaptive rate based feedback control algorithm using reinforcement learning neural networks (NNs). The reinforcement learning NN controller provides an adaptive optimal control solution. This is achieved via the formulation of a performance measure function (cost function) that is used to, adaptively, tune the weights of the NN. The cost function is defined in terms of two main objectives: (1) to minimize the cell loss rate (CLR), i.e., control congestion and (2) to preserve the quality of the voice/video traffic via maintaining the original coding rate of the multimedia sources. The results show that the NN control system is adaptive in the sense that it is applicable to any type of multimedia traffic. Also, the control signal is optimal in the sense that it maximizes the performance of the system which is defined in terms of its performance measure function. Hence, our novel approach is very effective in controlling the congestion of multimedia traffic in ATM networks

Published in:

Communications, 1995. ICC '95 Seattle, 'Gateway to Globalization', 1995 IEEE International Conference on  (Volume:1 )

Date of Conference:

18-22 Jun 1995