By Topic

Conductive Inkjet-Printed Antennas on Flexible Low-Cost Paper-Based Substrates for RFID and WSN Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Amin Rida ; Georgia Institute of Technology, Atlanta, 30309 USA ; Li Yang ; Rushi Vyas ; Manos M. Tentzeris

In this paper, a review of the authors' work on inkjet-printed flexible antennas, fabricated on paper substrates, is given. This is presented as a system-level solution for ultra-low-cost mass production of UHF radio-frequency identification (RFID) tags and wireless sensor nodes (WSN), in an approach that could be easily extended to other microwave and wireless applications. First, we discuss the benefits of using paper as a substrate for high-frequency applications, reporting its very good electrical/dielectric performance up to at least 1 GHz. The RF characteristics of the paper-based substrate are studied by using a microstrip-ring resonator, in order to characterize the dielectric properties (dielectric constant and loss tangent). We then give details about the inkjet-printing technology, including the characterization of the conductive ink, which consists of nano-silver particles. We highlight the importance of this technology as a fast and simple fabrication technique, especially on flexible organic (e.g., LCP) or paper-based substrates. A compact inkjet-printed UHF ldquopassive RFIDrdquo antenna, using the classic T-match approach and designed to match the IC's complex impedance, is presented as a demonstration prototype for this technology. In addition, we briefly touch upon the state-of-the-art area of fully-integrated wireless sensor modules on paper. We show the first-ever two-dimensional sensor integration with an RFID tag module on paper, as well as the possibility of a three-dimensional multilayer paper-based RF/microwave structure.

Published in:

IEEE Antennas and Propagation Magazine  (Volume:51 ,  Issue: 3 )