By Topic

Stability of synchronous machines with 2-axis excitation systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rama Murthi, M. ; University of Liverpool, Department of Electrical Engineering & Electronics, Liverpool, UK ; Williams, D. ; Hogg, B.W.

The paper describes analogue- and digital-computer studies of a synchronous machine with various 2-axis-excitation control systems. The steady-state and transient performances of the same machine are analysed, assuming different control schemes, such as rotor-angle control and asynchronised operation, and are compared with a conventional machine. The effects of damper windings, regulator time constants and stabilising circuits on the steady-state performance are shown by regulation curves. It is confirmed that the voltage-regulator loop gain has virtually no effect on steady-state stability, provided the winding with a.v.r. control is aligned with the flux axis by an angle regulator. The improved transient-stability limits obtained with high gains are shown. The fundamentally different transient behaviour of unregulated doubly excited and conventional synchronous machines is explained, and confirmed using accurate mathematical models of the machines. The method of `small oscillations¿ is applied to determine the speed stability of an asynchronised synchronous machine, and the transient performances of three different control schemes are compared in terms of swing curves and switching-time curves.

Published in:

Electrical Engineers, Proceedings of the Institution of  (Volume:117 ,  Issue: 9 )