By Topic

The hardness of decoding linear codes with preprocessing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Bruck, J. ; IBM Res. Div., San Jose, CA, USA ; Naor, M.

The problem of maximum-likelihood decoding of linear block codes is known to be hard. The fact that the problem remains hard even if the code is known in advance, and can be preprocessed for as long as desired in order to device a decoding algorithm, is shown. The hardness is based on the fact that existence of a polynomial-time algorithm implies that the polynomial hierarchy collapses. Thus, some linear block codes probably do not have an efficient decoder. The proof is based on results in complexity theory that relate uniform and nonuniform complexity classes

Published in:

Information Theory, IEEE Transactions on  (Volume:36 ,  Issue: 2 )