By Topic

The entropy of ordered sequences and order statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wong, K.M. ; Dept. of Electr. & Comput. Eng., McMaster Univ., Hamilton, Ont., Canada ; Shuang Chen

The entropy of a sequence of random variables under order restrictions is examined. A theorem that shows the amount of entropy reduction when the sequence is ordered is presented. Upper and lower bounds to the entropy reduction and conditions under which they are achieved are derived. Some interesting properties of the entropy of the individual order statistics are also presented. It is shown that the difference between the average entropy of the individual order statistics and the entropy of a member of the original independent identically distributed (IID) population is a constant, regardless of the original distribution. Finally, the entropies of the individual order statistics are found to be symmetric about the median when the probability density function (PDF) of the original IID sequence is symmetric about its mean

Published in:

Information Theory, IEEE Transactions on  (Volume:36 ,  Issue: 2 )