By Topic

Influence of wall impedance and self-fields on the cyclotron maser instability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Khalilzadeh, Elnaz ; Department of Physics, Amirkabir University of Technology, P. O. Box 15875-4413, Tehran, Iran ; Maraghechi, B. ; Chakhmachi, Amir

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3213374 

The compound influence of wall impedance and self-fields on the cyclotron maser instability is investigated for a hollow electron beam. A stability analysis is carried out using the linearized Vlasov–Maxwell equations, under the assumption that the beam thickness is small compared to the beam radius. A dispersion relation is derived and solved numerically to study the effects of the wall impedance and self-fields on the cyclotron maser instability. These effects lead to the elliptical motion of the equilibrium configuration. The growth rate decreases due to the wall resistivity and self-fields. It has been shown that the interaction between the self-field and impedance effects is in the lower reduction in the growth rate when they are both present compared to their separate effects added together. The instability bandwidth increases due to the wall impedance and decreases due to the self fields. In the presence of self-fields, a very small increase in the wall impedance causes an increase in the instability bandwidth. This shows that the widening effect of the bandwidth due to the wall impedance is dominant and prevails over the narrowing effect of the self-field.

Published in:

Journal of Applied Physics  (Volume:106 ,  Issue: 5 )