Cart (Loading....) | Create Account
Close category search window
 

Closed-Form Delay and Crosstalk Models for RLC On-Chip Interconnects Using a Matrix Rational Approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roy, S. ; Dept. of Electr. & Comput. Eng., Univ. of Western Ontario, London, ON, Canada ; Dounavis, A.

In this paper, a closed-form matrix rational-approximation algorithm is proposed to efficiently model the delay and crosstalk noise of coupled RLC on-chip interconnects. A key feature of the proposed algorithm is that, for any rational order, the approximation is obtained analytically in terms of predetermined coefficients and the per-unit-length parameters. As a result, the proposed method is not limited to fixed number of poles and provides a mechanism to increase the accuracy for cases when inductive effects are significant, the length of the line increases, or when the rise time of the signal becomes sharper. An error criterion is provided to select the order of approximation. The algorithm is tested for various single- and coupled-interconnect scenarios. The 50% delay and overshoot results match that of SPICE with less than 2% average error. The crosstalk results also accurately match those of SPICE with less than 4% average error.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:28 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.