Cart (Loading....) | Create Account
Close category search window
 

Maximum Entropy-Based Reinforcement Learning Using a Confidence Measure in Speech Recognition for Telephone Speech

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Molina, C. ; Dept. of Electr. Eng., Univ. de Chile, Santiago, Chile ; Yoma, N.B. ; Huenupán, F. ; Garretón, C.
more authors

In this paper, a novel confidence-based reinforcement learning (RL) scheme to correct observation log-likelihoods and to address the problem of unsupervised compensation with limited estimation data is proposed. A two-step Viterbi decoding is presented which estimates a correction factor for the observation log-likelihoods that makes the recognized and neighboring HMMs more or less likely by using a confidence score. If regions in the output delivered by the recognizer exhibit low confidence scores, the second Viterbi decoding will tend to focus the search on neighboring models. In contrast, if recognized regions exhibit high confidence scores, the second Viterbi decoding will tend to retain the recognition output obtained at the first step. The proposed RL mechanism is modeled as the linear combination of two metrics or information sources: the acoustic model log-likelihood and the logarithm of a confidence metric. A criterion based on incremental conditional entropy maximization to optimize a linear combination of metrics or information sources online is also presented. The method requires only one utterance, as short as 0.7 s, and can lead to significant reductions in word error rate (WER) between 3% and 18%, depending on the task, training-testing conditions, and method used to optimize the proposed RL scheme. In contrast to ordinary feature compensation and model parameter adaptation methods, the confidence-based RL method takes place in the frame log-likelihood domain. Consequently, as shown in the results presented here, it is complementary to feature compensation and to model adaptation techniques.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:18 ,  Issue: 5 )

Date of Publication:

July 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.