By Topic

Asymptotic Mean and Variance of Gini Correlation for Bivariate Normal Samples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Weichao Xu ; Dept. of Electrical and Electronic Engineering, The University of Hong Kong Pokfulam Road, Hong Kong ; Y. S. Hung ; Mahesan Niranjan ; Minfen Shen

This paper derives the asymptotic analytical forms of the mean and variance of the Gini correlation (GC) with respect to samples drawn from bivariate normal populations. The asymptotic relative efficiency (ARE) of the Gini correlation to Pearson's product moment correlation coefficient (PPMCC) is investigated under the normal assumptions. To gain further insight into GC, we also compare the Gini correlation to other two closely related correlation coefficients, namely, the order statistics correlation coefficient (OSCC) and Spearman's rho (SR). Theoretical and simulation results suggest that the performance of GC lies in between those of OSCC and SR when estimating the correlation coefficient of the bivariate normal population. The newly found theoretical results along with other desirable properties enable GC to be a useful alternative to the existing coefficients, especially when one wants to make a trade-off between the efficiency and robustness to monotone nonlinearity.

Published in:

IEEE Transactions on Signal Processing  (Volume:58 ,  Issue: 2 )