By Topic

Nonlinear Q-Design for Convex Stochastic Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Skaf, J. ; Electr. Eng. Dept., Stanford Univ., Stanford, CA, USA ; Boyd, S.

In this note we describe a version of the Q-design method that can be used to design nonlinear dynamic controllers for a discrete-time linear time-varying plant, with convex cost and constraint functions and arbitrary disturbance distribution. Choosing a basis for the nonlinear Q-parameter yields a convex stochastic optimization problem, which can be solved by standard methods such as sampling. In principle (for a large enough basis, and enough sampling) this method can solve the controller design problem to any degree of accuracy; in any case it can be used to find a suboptimal controller, using convex optimization methods. We illustrate the method with a numerical example, comparing a nonlinear controller found using our method with the optimal linear controller, the certainty-equivalent model predictive controller, and a lower bound on achievable performance obtained by ignoring the causality constraint.

Published in:

Automatic Control, IEEE Transactions on  (Volume:54 ,  Issue: 10 )