By Topic

Global stiffness modeling and optimization of a 5-DOF parallel mechanism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dan Zhang ; Fac. of Eng. & Appl. Sci., Univ. of Ontario Inst. of Technol., Oshawa, ON, Canada

Global Stiffness design and optimization of parallel mechanisms can be a difficult and time-consuming exercise in parallel robot design, especially when the variables are multifarious and the objective functions are too complex. To address this issue, optimization techniques based on kinetostatic model and genetic algorithms are investigated as the effective criteria. First, a 5-DOF parallel mechanism with a passive constraining leg and five identical legs with prismatic actuators for machine tool is proposed, and its corresponding inverse kinematics, Jacobian matrices and global velocity equation are derived. Second, with the kinetostatic model, the mean value and the standard deviation of the trace of the global compliance distribution are proposed as these two kinetostatic performance indices. Finally, the effectiveness of this optimization design methodology for global stiffness indices is validated with simulation.

Published in:

Mechatronics and Automation, 2009. ICMA 2009. International Conference on

Date of Conference:

9-12 Aug. 2009