Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

NIFDY: a low overhead, high throughput network interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Callahan, T. ; Div. of Comput. Sci., California Univ., Berkeley, CA, USA ; Goldstein, S.C.

In this paper we present NIFDY, a network interface that uses admission control to reduce congestion and ensures that packets are received by a processor in the order in which they were sent, even if the underlying network delivers the packets out of order. The basic idea behind NIFDY is that each processor is allowed to have at most one outstanding packet to any other processor unless the destination processor has granted the sender the right to send multiple unacknowledged packets. Further, there is a low upper limit on the number of outstanding packets to all processors. We present results from simulations of a variety of networks (meshes, tori, butterflies, and fat trees) and traffic patterns to verify NIFDY's efficacy. Our simulations show that NIFDY increases throughput and decreases overhead. The utility of NIFDY increases as a network's bisection bandwidth decreases. When combined with the increased payload allowed by in-order delivery NIFDY increases total bandwidth delivered for all networks. The resources needed to implement NIFDY are small and constant with respect to network size.

Published in:

Computer Architecture, 1995. Proceedings., 22nd Annual International Symposium on

Date of Conference:

22-24 June 1995