By Topic

Principles of high-resolution radar based on nonsinusoidal waves. III. Radar-target reflectivity model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hussain, M.G.M. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA

For pt.II see ibid., vol.31, no.4, p.369-75 (1989). A target-reflectivity model is developed for carrier-free nonsinusoidal waves with the time variation of a Gaussian pulse or a sequence of positive and negative Gaussian pulses representing a binary code, as was introduced in pt.I (see ibid., vol.31, no.4, p.359-68 (1989)). It is shown that the impulse response of a complex target that is composed of a finite number of scattering centers can be expressed as a sequence of Gaussian pulses. The characteristics of the Gaussian pulses, e.g. peak amplitude and nominal duration, are functions of the physical properties of the scattering centers, which are unique for each target. Hence, the impulse response waveform of a target can be regarded as a one-dimensional image in time (or range), which is valuable information for target classification and recognition. A signal processing technique is developed for obtaining an approximation of a target impulse response waveform from the backscattered and received signals. The signal processor is specifically developed for radar signals with the structure of complementary code pairs whose autocorrelation function is a single narrow pulse with no time sidelobes

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:32 ,  Issue: 2 )