By Topic

Sharp Bounds for Optimal Decoding of Low-Density Parity-Check Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shrinivas Kudekar ; Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland ; Nicolas Macris

Consider communication over a binary-input memoryless output-symmetric channel with low-density parity-check (LDPC) codes and maximum a posteriori (MAP) decoding. The replica method of spin glass theory allows to conjecture an analytic formula for the average input-output conditional entropy per bit in the infinite block length limit. Montanari proved a lower bound for this entropy, in the case of LDPC ensembles with convex check degree polynomial, which matches the replica formula. Here we extend this lower bound to any irregular LDPC ensemble. The new feature of our work is an analysis of the second derivative of the conditional input-output entropy with respect to noise. A close relation arises between this second derivative and correlation or mutual information of codebits. This allows us to extend the realm of the ldquointerpolation method,rdquo in particular, we show how channel symmetry allows to control the fluctuations of the ldquooverlap parametersrdquo.

Published in:

IEEE Transactions on Information Theory  (Volume:55 ,  Issue: 10 )