Cart (Loading....) | Create Account
Close category search window

Effects of the Localization of the Charge in Nanocrystal Memory Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Gasperin, A. ; Dipt. di Ing. dell''Inf., Univ. di Padova, Padova, Italy ; Amat, E. ; Porti, M. ; Martin-Martinez, J.
more authors

In this paper, we present a peculiar characteristic of nanocrystal (NC) memory (NCM) cells: The programming (P) windows measured in linear and subthreshold regions are different. A floating-gate flash memory cell with a similar structure does not show the same behavior, and the P window (PW) is independent of the current level of the extrapolation, as expected. By performing 2-D TCAD simulations, we demonstrated that this characteristic of NCM cells is due to the localization of the charge into the NCs. We investigate the correlation between the difference of the PWs in linear and subthreshold regions and the number, width, and position of the NCs.

Published in:

Electron Devices, IEEE Transactions on  (Volume:56 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.