By Topic

Tuning of Phase-Locked Loops for Power Converters Under Distorted Utility Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Freijedo, F.D. ; Dept. of Electron. Technol., Univ. of Vigo, Vigo, Spain ; Doval-Gandoy, J. ; Lopez, O. ; Acha, E.

This paper presents a novel approach in the tuning of phase-locked loops (PLLs) for power electronic converters. PLLs are implemented inside a higher level controller to estimate the grid-voltage phase angle and then control the energy transfer between the power converter and the AC mains. The tuning of the PLL is not a trivial task, particularly when considering power-quality phenomena. In a general way, PLLs with a low bandwidth (low-gain PLLs) are required when handling distorted voltages. It is analytically demonstrated in this paper that low-gain PLLs have more tradeoffs than high-gain PLLs (e.g., PLLs for communications); it is not possible to optimize the settling time for a phase jump without making slower the PLL response to frequency variations. Existing tuning methods do not take into account low-gain features, which may result in nonoptimum designs. The proposed PLL tuning methodology is based on inspection of frequency-domain diagrams and, contrary to the other existing tuning methods, takes into account ldquolow-gainrdquo dynamics. It assures an optimized performance in the presence of any kind of disturbances in the grid. From a practical point of view, the proposed tuning procedure is very intuitive for controller designs. Some significant design examples and experimental results, obtained from a discrete implementation (dSpace platform), are provided in order to validate the theoretical approaches.

Published in:

Industry Applications, IEEE Transactions on  (Volume:45 ,  Issue: 6 )