By Topic

Yield-Driven Near-Threshold SRAM Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gregory Chen ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Dennis Sylvester ; David Blaauw ; Trevor Mudge

Voltage scaling is desirable in static RAM (SRAM) to reduce energy consumption. However, commercial SRAM is susceptible to functional failures when VDD is scaled down. Although several published SRAM designs scale VDD to 200-300 mV, these designs do not sufficiently consider SRAM robustness, limiting them to small arrays because of yield constraints, and may not correctly target the minimum energy operation point. We examine the effects on area and energy for the differential 6T and 8T bit cells as VDD is scaled down, and the bit cells are either sized and doped, or assisted appropriately to maintain the same yield as with full VDD. SRAM robustness is calculated using importance sampling, resulting in a seven-order run-time improvement over Monte Carlo sampling. Scaling 6T and 8T SRAM VDD down to 500 mV and scaling 8T SRAM to 300 mV results in a 50% and 83% dynamic energy reduction, respectively, with no reduction in robustness and low area overhead, but increased leakage per bit. Using this information, we calculate the supply voltage for a minimum total energy operation (VMIN) based on activity factor and find that it is significantly higher for SRAM than for logic.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:18 ,  Issue: 11 )