Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Fast Analysis of a Large-Scale Inductive Interconnect by Block-Structure-Preserved Macromodeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hao Yu ; Berkeley Design Autom., Santa Clara, CA, USA ; Chunta Chu ; Yiyu Shi ; Smart, D.
more authors

To efficiently analyze the large-scale interconnect dominant circuits with inductive couplings (mutual inductances), this paper introduces a new state matrix, called VNA, to stamp inverse-inductance elements by replacing inductive-branch current with flux. The state matrix under VNA is diagonal-dominant, sparse, and passive. To further explore the sparsity and hierarchy at the block level, a new matrix-stretching method is introduced to reorder coupled fluxes into a decoupled state matrix with a bordered block diagonal (BBD) structure. A corresponding block-structure-preserved model-order reduction, called BVOR, is developed to preserve the sparsity and hierarchy of the BBD matrix at the block level. This enables us to efficiently build and simulate the macromodel within a SPICE-like circuit simulator. Experiments show that our method achieves up to 7× faster modeling building time, up to 33× faster simulation time, and as much as 67× smaller waveform error compared to SAPOR [a second-order reduction based on nodal analysis (NA)] and PACT (a first-order 2×2 structured reduction based on modified NA).

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 10 )