By Topic

Entropy and Correntropy Against Minimum Square Error in Offline and Online Three-Day Ahead Wind Power Forecasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bessa, R.J. ; INESC Porto, Inst. de Eng. de Sist. e Comput. do Porto, Porto, Portugal ; Miranda, V. ; Gama, J.

This paper reports new results in adopting entropy concepts to the training of neural networks to perform wind power prediction as a function of wind characteristics (speed and direction) in wind parks connected to a power grid. Renyi's entropy is combined with a Parzen windows estimation of the error pdf to form the basis of two criteria (minimum entropy and maximum correntropy) under which neural networks are trained. The results are favorably compared in online and offline training with the traditional minimum square error (MSE) criterion. Real case examples for two distinct wind parks are presented.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 4 )