By Topic

Temporal Noise Analysis and Reduction Method in CMOS Image Sensor Readout Circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bong Chan Kim ; Dept. of Electr. Eng., Seoul Nat. Univ., Seoul, South Korea ; Jongwook Jeon ; Hyungcheol Shin

Temporal noise such as thermal and low-frequency noise (LF noise) in the CMOS imager readout circuit has been analyzed. In addition, the effect of correlated double sampling operation on the noise was included. We have derived an analytical noise equation for the specified readout circuit, and confirmed its validity by comparing it with the simulation result. Thermal noise model which is accurate in short-channel devices operating in saturation region was used. Since the in-pixel devices (source follower and selection transistor) of the readout circuit are relatively small in size, and thus exhibits random telegraph signal (RTS) noise, both 1/f and RTS noise were considered for their LF noise. Based on the analyzed noise components, we presented the noise reduction method by adjusting the transistors sizes in the readout circuit.

Published in:

Electron Devices, IEEE Transactions on  (Volume:56 ,  Issue: 11 )