By Topic

A multi-context programmable optically reconfigurable gate array without a beam splitter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kubota, S. ; Electr. & Electron. Eng., Shizuoka Univ., Hamamatsu, Japan ; Watanabe, M.

Recently, optically reconfigurable gate arrays (ORGAs), which consist of a gate array VLSI, a holographic memory, and a laser array, have been developed to achieve a huge virtual gate count that is much larger than those of currently available VLSIs. Consequently, exploitation of the storage capacity of a holographic memory produces ORGAs with more than tera-gate capacity. However, comparison of conventional ORGAs with current field programmable gate arrays (FPGAs) reveals one important shortcoming: they are not reprogrammable after fabrication: to reprogram an ORGA, a holographic memory must be disassembled from its ORGA package, reprogrammed outside of the ORGA package using a holographic memory writer, and again implemented onto the ORGA package with high precision beyond the capability of manual assembly. Therefore, to remove that shortcoming, a programmable ORGA has been proposed. However, since previously proposed programmable ORGA configurations used a beam splitter, its alignment was complicated. Furthermore, the alignments of lasers were also limited. This paper presents a multi-context programmable optically reconfigurable gate array that uses no beam splitter. Furthermore, this paper presents discussions of the availability of this architecture and future plans based on experimental results.

Published in:

Circuits and Systems, 2009. MWSCAS '09. 52nd IEEE International Midwest Symposium on

Date of Conference:

2-5 Aug. 2009