By Topic

Considering Different Network Topologies in Optimal Overcurrent Relay Coordination Using a Hybrid GA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Noghabi, A.S. ; Dept. of Electr. Eng., Ferdowsi Univ. of Mashhad, Mashhad, Iran ; Sadeh, J. ; Mashhadi, H.R.

The directional overcurrent relays (DOCRs) coordination problem is usually studied based on a fixed network topology in an interconnected power system, and is formulated as an optimization problem. In practice, the system may be operated in different topologies due to outage of the transmission lines, transformers, and generating units. There are some situations for which the changes in the network topology of a system could cause the protective system to operate without selectivity. The aim of this paper is to study DOCRs coordination considering the effects of the different network topologies in the optimization problem. Corresponding to each network topology, a large number of coordination constraints should be taken into account in the problem formulation. In this situation, in addition to nonlinearity and nonconvexity, the optimization problem experiences many coordination constraints. The genetic algorithm (GA) is selected as a powerful tool in solving this complex and nonconvex optimization problem. In this paper, in order to improve the convergence of the GA, a new hybrid method is introduced. The results show a robust and optimal solution can be efficiently obtained by implementing the proposed hybrid GA method.

Published in:

Power Delivery, IEEE Transactions on  (Volume:24 ,  Issue: 4 )