By Topic

Content-Aware Distortion-Fair Video Streaming in Congested Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ying Li ; Electr. Eng. Dept., Princeton Univ., Princeton, NJ, USA ; Zhu Li ; Mung Chiang ; A. Robert Calderbank

Internet is experiencing a substantial growth of video traffic. Given the limited network bandwidth resources, how to provide Internet users with good video playback quality-of-service (QoS) is a key problem. For video clips competing bandwidth, we propose an approach of Content-Aware distortion-Fair (CAF) video delivery scheme, which is aware of the characteristics of video frames and ensures max-min distortion-fair sharing among video flows. CAF leverages content-awareness to prioritize packet dropping during congestion. Different from bandwidth fair sharing, CAF targets end-to-end video playback quality fairness among users. The proposed CAF approach does not require rate-distortion modeling of the source, which is difficult to estimate. Instead, it exploits the temporal prediction structure of the video sequences along with a frame drop distortion metric to guide resource allocations and coordinations. Experimental results show that the proposed approach operates with limited overhead in computation and communication, and yields better QoS, especially when the network is congested.

Published in:

IEEE Transactions on Multimedia  (Volume:11 ,  Issue: 6 )